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Abstract: The formal MDP framework (Markoy Decision Process) has become the model of choice for mode-
ling and solving sequential decision problems in the Al community. However, realistic problems are generally
difficult to treat in this framework : the state and the decision spaces are generally multi-dimensiona so that
their sizes are huge (> 10° states). Nevertheless these problems may often be represented in a compact way
and be decomposed into relatively independent subproblems (they are “weakly coupled™). The purpose of this
paper is to survey different methods that have been recently proposed by the AI community to address thege
“large” weakly coupled problems. This is illustrated over a toy-forest management problem. We hope to be
able to apply the proposed methods ta a real-case study.
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i, INTRODUCTION

Itis difficult, in the Markov Decision Processes fra-
mewoerk (MDP) [Puterman, 19947 1o deal with rea-
listic problemns with multidimensional state and ac-
tion spaces, due o the induced problem size (> 10%
states). However, these problems are often expres-
sed simply and compactly as a collection of mare
or less independent subproblems. When this is the
case, the initial problem is said to be weakly cou-
pled, and several famities of methods have been re-
cently proposed, that allow to solve such problems,
for larger and larger state spaces. Namely, three fa-
milies can be inventored

# The state aggregation methods group states in
subsets sharing the same features. thus reducing the
size of the MDP [Dearden and Boutillier, 1997]. In
the same family, actions are sometimes rather ag-

gregated in macro-acticns [Precup et al., 1998].

» The decomposition methods aim at decreasing
the complexity of the MDP by splitting the origi-
nal problem into smaller subproblems that are then
solved independently. The elementary solutions are
then combined in order to provide an approxima-
tely optimal solution to the global problem. The de-
compasition methods can be either serial [Dean and
Lin, 1995] when the global state space is the union
of smaller subspaces without much intercommuni-
cation, or parallel {Singh and Cohn, 1998] when it
15 a product of elementary spaces.

e Muiti-agentreinforcement learning methods [Lit-
man, 2001] combine Reinforcement Leaming [Sut-
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ton and Barto, 1998} with multi-agent methods, used
as a means of decomposing the initial problem.

In this paper, we first briefly recall some notions
about MDPs (Section 2). Then we describe the sim-
plified forest management model that we use as an
ltustration, and we show how it can be modeled
and solved in the MDP framework (Section 3} It
will become clear that classical methods do not per-
form well when the size of the problem (parameter
N number of stands) increases. In Section 4 we
describe how three methods issued from the fami-
lies just described, can be used o improve the re-
solution of the initial probiem. Finally, in Section 5
we show numerical comparison in terms of size of
the problems soived by the methods, time needed to
compute solutions, and quality of the approximate
solutions.

2. MARKOV DECISION PROCESSES

Markov Decision Processes mode! the dynamics of
an agent interacting with a stochastic environment,
through a sequence of decisions. The standard ma-
del [Puterman, 1994] consists of a state space S of
size 4.5, of a decision space D (#1), of a Marko-
vian dynamics described by transition probabilities
Fi{s'|s, d} of going from state s to & when d has
been pertormed at time ¢ €IV, and of local rewards
(s, d, 5"} associated to each transition (s, d, s/},

A pelicy 7 is defined as mapping from S 1o 7,
assigning 10 every state s an action d = =(s). An
initial state sp and a policy # determine a set of pos-



sible trajectories sy — §1 —F - 7> &g 0 WO
which are assigned probabilities TL Pisieslse, di).
To each trajectory is assigned a sequence of rewards
{riy, with r; = rolsi,disip1). The optimization
problem associzted 10 @ MDF consists in finding a
policy = which maximizes (for every initial statej a
vatue function defined as & measure of the expec-
ted sum of the rewards obtaiped throughout the exe-
cution of 7. The most commonly encountered va-
lue function is Lhe discounted criterion defined as:

vs € S,
i‘x
cemp oy VR i fo
¥ {b} = f [ wirlsy, WSS 4.1)[5[, = &
1= J

where § < v < 1 is a discounting factor, allo-
wing to increase the importance of present rewards,
relatively to future ones. In general, finding 77 =
argrmax, V7 s closely ljni@d to the computaiion

of V" = max, V7 = V7

Indeed, a fundamental result concerning MDPs is
the existence of an optimality equation, known as
Bellman's equation which fully characterizes the op-
tirpal value function [Bellman, 19571 In the case
of the discounted criterion, this equation takes the
form:¥s &€ 5

V() = max 30 (s | s (s, 454V ()
113 Py

It can be shown that the solution of this eguation
is unique, and that kpowing this solution allows 1o
determine an optimal policy 7° Vs € S, 7" (s) =

ArgIax

p(s' |, d)rls 4,5} +7V ()
de b ‘e

HES

The two most classical algorithms for solving MDPs
are the iterative algorithms Value Iteration and Po-

licy jteration. For a fixed -y, both algorithms converge
in a polynomial (in 5 and #0} number of ite-

rations, with respective complexity of Of 4 D#.57)

and OHA DH:8Y 4+ #5%) per fteration. Bxperimen-

tally, Policy Tteration is found to converge faster

than Value Iteration.

3. FOREST MANAGEMENT MODEL

The problem that will ilustrate the various approaches

to solving “large” MDPs is a multi-stand forest ma-

pagement problem pervaded with unceriainiy, inwhich

we want to maximize the long-term expected reve-
nue from timber sales. We model the problem in
a MDP framework, foliowing similar works from
[Rapaport et al., 2001} and [Kennedy, 19981

3.1 Stales of the Sysiem

The forest is composed of N homogeneous stands
{(same tree species), that can be of different sizes and
shapes. On each stand n, af € A = {1~ LAY
represents the age of trees ' in years, or in tenth of
years, depending on the species considered.

The state vector at time period { is:

N AN
se=(a}, - a)e S =4

3.2 Decisions

At time ¢, we decide which stands will be clearcut
within the next time perind. The decision vecior is:

dy = (db o dYy e oY
where df' = 0 if stand n is clearcut, 1 if not. The
cuiting decision may not have the desired effect ifa
fire occurs within the [1,§ + 1] period.
Another decision to be taken, is the fire protection
xpenditure level, ¢, € & = {1,--, £}, applied
globally for the forest for the current pericd. ¢, may
consist of funds allocated to the fire tower network,
road maintenance... It shall be noticed that e, 1s the
only factor that links the dynamics of the different
stands, and thus prevents us from considering them
as independent.

3.3 Trapsitions

Omnee a decision vector d; has been chosesn, it deter
mines a transition function on the ages of the dif-
ferent stands. This transition function is stochastic,
due to the stochastic nature of the fire event, mode-
fed by the probability table Priro{n. af, e, ) indexed
by stand number, age, and fire protection ievel. So,
the dynamics for each stand is defined as follows:

2 If dF = O {clearcut), af’y = L.

s If 4% = 1, the age of wees at the next time per-
iod depends on the fire event: if there (s a fire (with
probability Pripeln, al, e}) afjr.l = 1 and if not,
ap., = minfal + 1, 4) (trees grow older).

We then define a transition probability Pap o, (@], a1
AL Rt t+1

for every stand. At the global level, due to the inde-

pendence of the various stands, e, being fixed :

Plsigilse e de) = 1] Papenlal ofin)
=]
3.4  Owteomes from Timber Sales

Immediate outcomes originate from timber sales and
are a function of the culting decision on every stand,

1. We consider that all trees oider than 4 keep the same pro-
periies, and thus need not be distinguished
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and of the global fire protection level,
ry = I'P(st e, de, SH-'J.)

N
= —hled) = K(de) + ) raldl 0 afyy,m),

n=l

with k{e. ) the cost of protection, £'(d,) cutting costs,
and r(d}'. o', af',,, n) price of the whole stand tim-
ber stock if df' = 1, and of the salvaged timber if
there is a fire. a(d}, o', al ) = 0 if we choose
not to cut and there is no fire.

4. SOLVING LARGE YOREST MANAGEMENT
PROBLEMS

Our objective is to be able to deal with problems of
about 50 stands and 6 age classes. This is yet from
from real-world application needs, but as se will see
in Section §5 it already challenges exact solving me-
thods for MDP, therefore we explore approximation
methods,

4.7  Btate Aggregation Methods

The idea is to decrease the sizes of the states and
actions spaces by modifving the representation of
these states and actions. Following [Kennedy, 1998}
and [Rapaport et ai., 2001], we assume that the fo-
rest is composed of /¥ identical stands. This simpii-
fying assumption allows to group states by age class
and to adopt, for states and actions, the foilowingre-
presentations:

4.1.1 States of the System

The state vector is now s, = (n}, .-, nf) € &,
with n{ = number of stands aged a at time ¢. Note
that we have Vi, 57, n? = N.

This is an aggregation technique, “roupmg all stands
of age ¢ in a unigue state variable n®, with the un-
derlying assumption that differences between stands
do not matter for the problem. It can be shown that
the size of the modified state space is #£5 = CF T
[Cucala, 2001]. This size. in O{N 71}, should be
compared to the size of the original state space #£.5 =
AN For instance, for 4 = 5 and NV = 6, the size is
reduced from 15625 t0 210, and for 4 = N = 10,
from 10*" to fess than 10%.

4.1.2 Decisions

Similarly, the size of the original decision space is
#D = 2V x F. We can also cieﬁne an aggregated
repreeenmnon of the form d' (s} = {c! cetel,
with < ¢® < n®, the ﬁumba of Stands aged @ that
will be cut.
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With this representation, the size #D(s) of the de-
cision space depends on the current state s:

#D(s)={n' + 1= . x(n*+ 1) x E.

It can be shown that Vs, #D(s) < {(N/A+2)* = E,
that is #£ D(s5) = O(N* x E).

4.1.3 Transitions

Transitions from ¢ to ¢ -+ 1 are expressed differently
in the aggregated model, forstands aged o < A —- 2
and for those aged A — 1 or A

s fora < A — 2, if ¢f stands are cut, there remains
n = ny — ¢f stands before fire events. Considering
that each remaining stand has an identical probabi-
lity of burning Prir.{a, ¢;) and that fire events are
independent, a probability distributionover nfjfi can

bedefined: Yz 0...n,
Pniil = zlnf — of = n &)

= (OF % [Bfirf(&; eﬁ)]n%: B [1 - F:.z'nce‘ndié'(a'\ 5{:}}:

n

# for older trees, functioning is a bit different, since
af time f -+ 1 stands aged A may come from stands
previously aged 4 — 1 as well as A. It can be shown
thatvVz €0 ...n

P{ﬂﬁ.l = Si'rz.gqulwcf‘“l =y, 0 —cf =, )
= P'(nﬁ_1 = zljn;‘“l . cf“g‘ ™y, e
% Pr{(n; Z_ - zlinfl - c:,j‘ = ny, &),
where P/(nfy, = aint e = nge) =
Cit o [Prire(A = 1, eg)}”i” U {1 = Pripo(A
i, et)} Land P/{ni = z—nnit—ct = np.e) =
Car [ Prine (4, €0)]"2™ 45 1= Prine (A, 0 )]

Finally, the overall transition probability is defined
as:

A=z
1
Plsipi|se,er, o) = H P\nr‘*' nd —cf e}
a=1
A A1 A-1 A A
XP{nigdng T =T ng ol e

4.1.4 Outcomes

Outcomes are also aggregated by age class, which
leads to the following overall outcome formula:

vy o= T(S;,Gg,d¢,3¢+i)

A
= —kle ) — k'(d;)-j—Z?’ nf.wf;‘f,a)

a=l



For every age class, r{cf. nf, nfi} ,a} is the sum
of the revenue from the timber cut, and the timber

salvaged from fire. We got, foro < 4 — 2:

rlef g, nifla)
= pricer(a) % f + prices(a) x (nf —nfFl —cf).

The first term corresponding to the timber cut, and
the second 1o the timber salvaged (where price) and
prices are the respective fimber prices).

For the two oldest age classes, the situation is a bit
more difficult, since among the stands that burn at
time {, it is impossible from the simple observation
of &, 7y and np .y to determine which part was aged
A — 1 and which part was aged 4. We get:

-r(cf‘ L nf‘ ntiﬂ A-1)+ ?"( N ,an A)
= pricer{A — 1} % ¢t 4 price (4) x off
pricel (A, A~ 1) = (nf" ﬂri_l ety

Where the two first terms correspond to the return
from timber cut, and the last term from the salvaged
timber. prices, (A, A — 1} is a combination of the
timber prices for ages A — 1 and A, with weights
corresponding to the a priori probability that a burmnt
stand comes from age category A — 1 or A: this
is the only approximation of the model, which be-
comes then exact when prices(4—1) = prices(4)
priceh (4,4 —1).

4.2 Decomoposition Methods

The idea of decomposition methods is to divide the
initial MDP into smaller problems that will be sol-
ved independently, the elementary solutions being
combined to give an approximate solution to the
initial problem. In the literature, decomposition me-
thods can be split into serial decomposition and pa-
rallel decomposition methods.

Serial decomposition methods {Diean and Lin, 1995]
are used when the state space can be considered
as the union (5 = S, S2 1 J... U Sw) of elemen-
tary state spaces which are “weakly communica-
ting”. Each subset 5 is divided into 5; = R; U I,

where R; is a set of inner states (from which by any
action the system remains in S;) and 07 is a set of
frontier states (which do not posses the inner states
property). Weakly communicating means that the
{7; are small with regards to the S;. Methods based
on serial decomposition for solving MDPs generally
consist in assigning arbitrary values 1o the frontier
states and then iteratively solving the sub-MDPs on
the S;s and vpdating the values on the U;s.

Parallel decomposition [Singh and Cohn, 1998] is
used when the state space s the Cartesian product
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of sub-spaces: 5 = 57 % 89 x ... x Sy, Generaily,
the decision space can be dew'npesed in the same
way: D = Dy x Dy % ... x Dy, or more generally
Iy g D} = f)g Xo.x JDN.

Our forest management problem belongs to the se-
cond category of probiems, for which paralle] de-
composition methods may be adapted. Unfortuna-
tely, existing methods are only adapted for problems
for which the sub-MDPs are only linked by the use
of a common, limited resource (which restricts [3),
whergas in our problem the dynamics of the sub-
MIDPs are not independent, since they are all affec-
ted by the choice of the decision variable ¢, the glo-
bal protection level. So we propose new paraliel de-
composition methods that adapts to the specificity
of our problem.

4.2.1 Problem decomposition

In our forest management model, the only link bet-
ween the stands is the global protection level «;.
The idea that we develop in this section is to break
this link by allowing, as a first approximation, o
use different levels of protection, e € {1,-- £}
in the different stands. Then the new global MDP
< S, 0 P R > can be solved exactly by solving
the independent sub-MDPs < 5, DL, P, R >,
where S, = {1... 4} 00 = {01} » {1.. . E}
and P, and H, are defined as before. We get now

local optimal policies 7™ © A — 0,1} x £, and
A= IR

associated value functions V7 ¢

The question is now how to build a global policy
from these local policies? If the protection levels
were really independent, the simple union of the 77
would be optimal, unfortunately this is not the case.

since a global policy shall have a unigue prevention
level. Several sclutions may be explored:

4.2.2 Direct method

The first method consists in building an approxi-
mate global policy:

T.app(sc - {“ (\'l )\Li\(} i} N(a;\r),i{ﬂ,l}}uez

where £; is chosen as

ecfs) = argmageen z Vel x Tenap)me-

nw=i

@) = 7" (a} )4 E s the local optimal pro-
tection level. Thus, e;{s;) is a compromise between
the different stands that contributes for the most to
the global value function V' (s:) Zﬁ'ﬂ V{al').
This method is only heuristic, and only takes into
aceount, for evaluating protection level ¢,, the stands

where it is found to be locally optimal.

where ] (a?



A first way to improve this first choice is to adapt,
in the stands in which e, is not locally optimal, the
current cutting decision.

4.2.3 Updating the cutting decision

Once the global protection level ¢, is chosen as be-
fore, we may use the local vatue functions V" (af)
just computed, in order to recompute “greedily” (using
one computation step only) the local cutting deci-
sions. This is done as follows:

dif{a}) = argmax g
o e N
dg{1,2} ap g1, A}

7Pz {0f alys) <V (a0}

{rald el afyq)

Of course this new computation of f is done only
for stands in which e} is different from e,.

This method improves the policy computed before.
for an additional cost limited to the above argmax
compultation, Himited to the local states (at most V %
A), for which the local fire protection level is dif-
ferent from the optimal.

4,24 Siochastic policy

Rather than choosing a fixed global protection level
e, for each global state ;. we can choose a stochas-
tic protection level obtained, for instance through

N he 4] T )
i'/e = En:l 3 (at } x lﬂ?(a;‘):s-

P(Etﬁe:]:“““g""“"— \7’\96{1‘,&‘}

4.3 Reinforcement Learning

Reinforcement Learning (RL) consists in learning
an optimal behavior through repeated experiences
within an environment [Sutton and Barto, 19981, It
can also be seen as a convenient way o overcome
some limitations of MDP, in two different directions:

e The use of simulation of the dynamic process to
control, in order to direct the exploration of the state
and action spaces. This translates into the use of ite-
rative stochastic algorithms, typically used in RL.

s The use of structured or compact representations
of value functions and policies, thus allowing to ta-
ckle with large, multi-dimensional problems.

431 The (3-learning algorithm

The value function V7 of a policy = can be directly
learned from observed trajectories by using the TD(A)
algorithm, without maintaining an estimation of the
transition probabilities p(s'|s, 7(s)) [Sutton and Barto,
1998]. It is also possible to learn directly an estima-
tion of the optimal value function of the problem
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with the algorithm Q-learning . Q-learning regu-
larly updates an estimation (J,, of the optimal Q-
value function denoted by £)7: Vs, d,

Q' (s, d)= 5 plsls d) (r(s, ds) + ~,W'(s’)) ,

ste8

which is characterized by the optimality equations:

Ya, d, @*(s,d) =

z pls'ls, d) <J(‘~, d.s') + v n}a}f@”{s’, d')) .

. AT E A
sie s

An optimal policy can then be directly derived from
" by 77 (s) = argmaxy. 5 " (s, 5), ¥s.

The principle of the Q-learning algorithm is to Up-
date, after every transition {(sn, dn, Sng1, 'n) the es-
timnated vaiue function (2, for (s, 5}, accordingly
to the update rule:

(E - an)@n{snydn)
4 apir. + max Qnfs,. 0}

Dnp1(8n, dn) =

where the learning rate o, decreases to 0 when n
increases. The convergence of the (-learning algo-
rithm to the optimal policy is established under ge-
neral hypotheses.

432 Bblulti-agent Reinforcement Learning

As we have seen, the Q-learning algorithm may avoid
in the forest management problem to store expli-
citly the global transition matrix P. Nevertheless,
it needs to store the () function, of size E{24)",
which can not be done for large values of IV,

This motivates the use of a mulii agent algerithm,
as advocated by [Littman, 2001]. The idea under-
lining the multi agent approach is to consider that
each stand is managed independently by an agent,
the fire protection level being managed by a N + 1
agent. Of course, the motivation of this approach is
to limit the size of the memory needed for storing
the N + 1 @~functions. This implies limiting the
information available to each agent.

After a first analysis, it appeared that the following
factors were important for the stand agents: age af
of trees in stand n. average age @, of trees in the
forest. number of stands cut in the preceding period
('ut, .y and current preveniion level e;—;. Concer-
ning the prevention agent, an aggregated represen-
tation of the ages of trees ({n}, -, n'}) would be
an imporiant factor, as well as the current prevention
fevel e;.q.

The global size needed to store the ¢J-functions is
then in O(F x (A® x N? + N471)}. The limi-
ting factor being the protection agent’s need for the



age repartition profile. We used the mald-agent (-
learning algorithm [Littman, 2001] to solve the pro-
Blem. In its spirit it is very close to the original -
learning algorithm, each stand agent choosing an
action, updating the global state, then the fire pro-
tection agent chooses an new protection level. Then,
all §-functions are updated.

5. MUMERICAL COMPARISONS

The global MDP model of the forest has AV states
and 2% » [ decisions. As was already mentioned,
the size of the problem grows exponentially with &
and A. This prevents us from comparing experimen-
tally the above methods for too large values of 4.

So, we made two series of tests, varying the N pa-
rameter, for the two following configurations: C1
A=3F =2, and 4 = 6, £ = 3. Then, for
the various algorithms we tested the limit sumber of
stands (V. ) for which a solution could be found.
Furthermore, for N = 5 we computed the {ime nee-
ded to obtain the solutions, for cases €1 and C2. For
the case €1 for which an estimation of the real value
function could be computed, we computed the qua-
lity of the solutions returned by the approximate al-
gorithms. The quality criterion was the average va-
lue per stand of the policies over 5.

- 11
- 2 I"”T %
F N#S = (s)

The values V™ and p™ where computed exactly when
possible, or estimated [Garcia and Serre, 2000] by

the ATD algorithm. Computation was performed using

MATLAB (Mathwork, Inc)in a Linux environment.
Results are listed in Table 1.

Table 1: Comparison resulis.

Nopaz Noaae T T P
Method i C2 1 C2 1
Exact 35 4 12775 - 100%
Agreg. 10 6 11.21 231745 | 100%
Direct 13 8 (.21 2.83 95%
Updated i3 8 0.67 40,55 a7 %
Rl > 100 13 19.8 39.4 46%

6. CONCLUSIONS

The reselts of this study are still preliminary, but
conclusions can already be drawn at this stage. First
of all, aggregation methods may not be sufficient
by themseives for solving multidimensional MIDPs
with a large dimension. At that point, decomposi-
tion methods, eventuaily coupled with RL methods

may be preferred. Concerning the decomposition me-

thods, which are the most efficient in terms of com-
putation time, the space limitation (which limits the

number of stands) comes from the representation of
the protection vector, of size J(4"). For the RL
methods, the space limitation also comes from the
representation of the policy of the prevention agent,
which is in O(N* x E). For these two kinds of
method, more care should be given to the represen-
tation of the fire protection policy, and maybe less
information could be sufficient for providing a sa-
tisfying approximate policy.

Another difficulty comes from the evaluation of the
RL policies that are obtained for large NV values. At
the moment it is difficult to conciude anything on
the quality of the obtained policies.
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